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The emission of fluorescence by an atom which is close to the

surface of an optically-reflecting medium is examined. All linear

media, like a dielectric, a metal, a thin film on a substrate, etc., are

dealt with in a unified way. It appears that only the classical Fresnel

coefficients for reflection of a plane wave enter the expression for the

radiation field. The reflection by nonlinear media is also considered,

and in particular optical phase conjugators which operate via degenerate

four-wave mixing. The two strong laser beams which pump the nonlinear

crystal are assumed to be in resonance with an atomic transition

frequency. It is shown that the angular intensity distribution and the

polarization of the fluorescence are determined by classical

interference of waves, although the radiation is pure quantum

mechanical. It is also shown that an atom in its ground state can

fluoresce when it is near a phase conjugator, and that this phenomenon

follows from the classical properties of this quantum radiation field.

Keywords: fluorescence, interface, phase conjugation, angular spectrum



I. flIRODUCTION
Emission of fluorescence radiation by an atom is a pure quantum

mechanical process. An intriguing question is whether this underlying

quantum mechanism in the production of the radiation is reflected in

special properties of the emitted electromagnetic field, or, is the

field after it is emitted first ordinary radiation, which is

indistinguishable from a classical electromagnetic wave. The pioneering

experiments by Kimble, Dagenais and Mandel 1 - have shown that quantum

radiation is indeed different, and that the mechanism of emission leaves

its traces in the form of some peculiar statistical features in the

sequence of photon detection from this radiation field. They found that

fluorescence photons exhibit a so-called 'antibunching' behavior, which

means that these photons arrive at a photomultiplier tube well-separated

in time, e.g. two photons never arrive together. Photons in an

electromagnetic field with a classical analogue, however, tend to stick

together (they are 'bunched').

After acknowledging that fluorescence radiation is essentially

quantum mechanical in nature, we can reverse the question. Which

properties of the emitted field originate from quantum mechanics, and

which properties have a simple explanation in classical terms. In this

paper we consider the emission of fluorescence by an atom (dipole) which

is positioned in the vicinity of a surface. The general approach to

this problem4 -5 is to quantize explicitly the radiation field in a

plane-wave mode decomposition, both above the surface and in the medium,

and then calculate radiative lifetimes of excited states and fluorescent
6

spectra. Recently we have shown, however, that the structure of the

spontaneous-decay operator for this situation is entirely determined by

the rotational symmetry of the system under rotation about the normal

direction to the surface, rather than by the nature of the quantized

field for a specific medium. Here we present a derivation of the form

of the radiation field, emitted by a dipole near a surface, but without

reference to detailed properties of the medium, and without an explicit

quantization of the field. Therefore, the results hold for both a

quantum and a classical dipole, and in this way we can keep track of the

classical features of this quantum radiation field. It also enables us

to treat the various possible media with a unified theory.

An atom with a dipole-moment operator p is located at a distance h

above a surface. We take the surface as the xy-plane and the empty

space above it as z > 0. Then the position vector of the atom is h

.. .. .......... .. . . -mnm um n mua m n l llnl m -



he . In the region z < 0 we have material like a dielectric layer, a-z

metal (mirror), or a thin film on a substrate. The medium is infinite

in extend in the x and y directions, compared to h. All these

configurations have in common that the material is linear in its optical

response, and therefore an incident plane wave will always be reflected

in the specular direction. We shall consider separately the case where

the medium is an optical phase conjugator based on four-wave mixing in a
7

transparent medium. The only difference is that a reflected wave in

the region z > 0 now propagates in the direction opposite to the

incident wave. We shall show that this seemingly minor difference in

the optical response of the medium has dramatic consequences for the

emission of fluorescence. Figure 1 illustrates the two situations.

II. GENERAL FORM OF THE ELECTRIC FIELD

The emitted fluorescence can be detected by a photomultiplier tube

(either operating as a photon counter or as an intensity meter), which

is sensitive to the electric component E(r,t) of the field. Since this

detector is located in the region z > 0 above the surface, we shall

restrict our attention to the solution for the field E(r,t) in this part

of space only. In general, we can write for z > 0

E(r,t) - Evr(,t) + E p(rt) + , (2.1)

where v, p and h stand for vacuum, particular and homogeneous,
respectively. The vacuum field E is by definition the solution for the

-V

field E for the situation that the atom would not be there. In a

quantum approach, this is the always-present vacuum radiation field, but

in a classical treatment this term is absent. This E is responsible-V

for the spontaneous decay of an excited atomic state, which leads to the

emission of the fluorescence. Notice that this E must be different-V

from the E for completely empty space, since the presence of the-V

surface and the medium put limitations on the possible plane-wave

solutions, due to the boundary conditions for the field at the surface.

Also, E contains possible other freely-propagating components, like a-V

laser field which can be applied to drive a certain atomic transition.

Continuous excitation and spontaneous decay then gives rise to the

emission of resonance fluorescence. The second term, E, in Eq. (1.1)

is the field of a dipole in r - h, but in empty space (e.g. , no medium

present). By adding the third term Eh, which must be a solution of the
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homogeneous Maxwell equations (no source terms), we can let the total

field E satisfy the boundary conditions at z - 0. Obviously, E h is the

dipole radiation which is reflected by the surface, whereas E serves as-p
an incident field.

The field E(r,t), together with the magnetic field, must obey

Maxwell's equations, both in a classical and a quantum approach. In the

quantum theory, E(r,t) is an operator field, and the Heisenberg

equations for the field operator are identical in form to the classical
8

Maxwell equations. Therefore, we can solve both problems

simultaneously. The source term is of course the oscillating dipole

p(t), but we shall keep the time dependence of p(t) unspecified. In

this fashion, we can treat the spontaneous decay of an excited atom and

a laser-driven atom (where the t-dependence of p(t) is a forced

oscillation with the laser frequency) on an equal footing. Notice that

the t-dependence of g(t) represents the Heisenberg representation of the

Schrodinger operator p.

Maxwell's equations are most easily solved in the Fourier domain.

We define

( r cdt ei t  E(r,t) , (2.2)

with w real, and similar definitions hold for other time-dependent

quantities (most notably i(w)). The field must be Hermitian

E(r,t)t  - E(r,t) , (2.3)

which reads in the Fourier domain as

E(r,w)t - E(r,-w) . (2.4)

A convenient concept is the positive frequency part of the field,

defined as

E(+ t) " Lt fdw eit E(r,w) (2.5)

Then the field itself is given by

E(r,t) - E (+)(r,t) + E ()(r,t) , (2.6)



with

E(')(r,t) - {E(+)(r,t)} '  2.7

as the negative frequency part. The advantage of the introduction of

E( + ) follows from Eq. (2.5). As soon as we know t(r,w) for positive w

only, then we know the entire field E(r,t), as reflected by Eqs. (2.6)

and (2.7). Similar relations hold for _p(t), A(w) and (+) (t), since the

dipole moment operator is also Hermitian.

III. ANGULAR SPECTRUM OF DIPOLE RADIATION

The component t of the radiation is the field of a dipole U^(w) at-p

r - h, and in its most concise form it is given by

!P(r,w) -we-(k~a(w) + (M(w)-V)V)G(r-h,k) (3.1)
0

for w > 0, and with k - w/c. With the Green's function for outgoing

waves

ikir-h

G(r-h,k) _ r-hl (3.2)

it is easy to verify that Eq. (3.1) is identical to the more familiar

forms.
9

In order to find the homogeneous contribution ' to the radiation

field, which is the reflected field, we have to construct t + -,h and-p -
something similar for the field inside the medium, and for the magnetic

field. Then the boundary conditions which follow from Maxwell's

equations determine the field everywhere in space. However, this is an

extremely complicated procedure, due to the complexity of the dipole

field. Besides that, this procedure depends on the nature of the

medium. A thin layer on a metal substrate and a half-finite dielectric

will yield very different results. With this in mind, we have developed

a general technique to solve this problem, which is also directly

applicable to nonlinear interactions like reflections at a phase

conjugator.

As a first step, we use Weyl's representation of the Green's
10

function, instead of the standard form (3.2). It can be shown1 that

Eq. (3.2) is equivalent to



SiK, -Eiyiz-hI
G(r-h,k) da JdB I e - (3.3)

where the vector K,1 is defined as

5 a1 + Re (3.4)

in terms of the integration variables a and . The subscript :1 is a

reminder that this vector is parallel to the surface, and for later

purposes we define two other vectors in terms of Kq as

+-ye - (3.5)

The parameter 7 is given by

I - , 6 0 (3.6)

where the notation 6 4 0 implies that the imaginary part of 7 is

positive.

Now we can substitute expression (3.3) for the Green's function

into Eq. (3.1) and carry out the differentiations. After some

rearrangement of terms, we obtain the representation for the particular

solution as

(rw) L (w)e 6(r-h)
Se Z -Z --

* Fa r fd8 2 1..L.. e iN - r+i7I z-h I

2.,

* [{-,(Kol.A(w))sgn(z-h) + KIIz (w))ez

+ k2 _(w) - (KII.(w) + -yz(w)sgn(z-h))K1 ] , (3.7)

where A, and Az are the parallel and perpendicular components of A

with respect to the surface, respectively. Expression (3.7) is

sometimes called the angular spectrum of plane waves. It simply means

that for every combination of a and P the integrand of Eq. (3.7) is a

plane wave, and it is easy to check that these waves are transverse.

For -y > 0 we have travelling waves, but for - imaginary the waves are



evanescent, e.g. , decaying in the +z and -z directions. Also notice

that the waves are different for z > h and 0 < z < h, due to the

appearance of sgn(z-h) and Iz-hi. This guarantees that all plane-wave

components emanate from the position r - h of the atom.

IV. DECOMPOS TION INTO s AND p WAVES

Although the angular representation of dipole radiation, Eq.

(3.7), still looks very complicated, it is now obvious where the

simplification enters. The double integral is a summation over

transverse plane-wave components, which satisfy Maxwell's equations

individually. In order to find the reflected dipole field, we only have

to know how a classical plane wave is reflected. By superimposing the

various components in the same way as in Eq. (3.7), we then obtain

immediately Lh(r,w).

The amplitude ratio of the reflected and the incident wave is

usually expressed in terms of Fresnel coefficients, which are different

for s (surface) and p (plane) polarized waves. Therefore, we first have

to decompose the angular spectrum into s and p waves. We see that all

plane waves in Eq. (3.7) have either wave vector K+ or K_, depending on

the sign of z-h. For the s and p unit polarization vectors for a given

wave vector, we adopt the following phase convention:

- LK xe (4.1)

- _.._ (±K I - KIez) (4.2)

For z > h the wave vector of any plane wave is given by K+, as

follows from Eq. (3.7), and therefore we have to decompose the factor in

square brackets into an eKs and an eK  component. The remarkably-+ -K+p

simple result is

(r,i) - da d e-iyh

X (e, K * A())e K az > h (4.3)a- + k(r w - Jd 8f



where the summation over a runs over a - s and p. Every plane wave

exp(iK+.r) is either travelling or decaying in the +z direction, and

they correspond to the (d) photons from Fig. 1.

The waves which travel into the direction of the surface are found

to be

(r,w) -K K- de h e (i -K a

0 a

O<z zh , (4.4)

which are of the exp(iK *r) type. These plane waves serve as the

incident waves on the surface, for which we have to find the (classical)

reflection coefficients.

V. REFLECTED FIELD

In order to obtain the angular representation of the homogeneous

solution 9h' we recognize that Eq. (4.4) gives the plane-wave expansion

of the incident field, so we only have to find the reflected waves on a

per-wave basis. We can proceed along these lines in a general way,

provided that we distinguish between two cases.

V.a. Linear Medium

As illustrated in Fig. 1, for a linear medium the reflected wave

is always in the specular direction, no matter the kind of medium. We

found in the previous section that the incident waves have wave vector

K and polarization vector eK a' But then the reflected wave simply has

wave vector K +, and for the phase convention of the polarization we can

again take eK a as polarization vectors. We indicate the Fresnel

coefficient for refl-'tion of a K,a wave by RK a Then the total

reflected field is immeoiately found to be

. i +' k2 eiYh ()K

(r,w) - F d2 e RK a+(r a'- -Ka

0 a

z > 0. (5.1)

Although expansion (4.4) for the incident waves only holds for 0 < z <

h, the solution (5.1) pertains, of course, to the entire region z > 0.



V.b. Nonlinear Transparent Medium

If the dielectric constant of the material in z < 0 almost equals

unity (transparent medium), then the specuiariy-reflected wave is

absent. The only way a reflected wave can be generated is via the

third-order susceptibility (for isotropic media). But X (3 ) is about 20
(1)

orders of magnitude smaller than X and hence this contribution to

reflected radiation is also negligible. However, there is a way of

enhancing the third-order interaction considerably, without introducing

a first-order (linear) interaction. If we shine two strong

counterpropagating laser beams through the material, and in a direction

parallel to the surface, then these two fields couple to the incident

field via X(3) Effectively, this enhances the coupling parameter for

the nonlinear interaction bv a factor which is proportional to the

intensity of the two pump beams (supposed to be equal). With

contemporary high-power lasers it is easy to achieve an interaction

strength which produces reflected radiation with an intensity comparable

to the intensity of the incident wave, or even higher.
1 1

In the described setup, the device (medium plus two pump lasers)
12

operates as a phase conjugator. Without going into the details of the

mechanism of optical phase conjugation, it is easy to show 7 that in

general the wave vector of the reflected light is opposite to the wave

vector of the incident wave, as shown in Fig. 1. This implies that the

reflected wave retraces the path of the incident wave, and so it travels

back to the atom which emitted the wave. In this sense, optical phase

conjugation is identical to time reversal. A slightly more careful
13

analysis shows that in fact the negative frequency component of the

reflected field is proportional to the positive frequency part of the

incident wave, where the ratio of amplitudes is again a simple Fresnel
14

reflection coefficient, and both waves have the same wave vector. For

classical radiation this subtlety makes no difference, but for quantum

radiation it has dramatic consequences, as we shall show later in the

paper. Then, with Eq. (4.4) we can construct the homogeneous solution

. . iK *r k2eih

th(r,-w) do dpe 8r 2 e a-KM P)(e , (5.2)

where PKa indicates the Fresnel coefficient for reflection at the PC.

i . i i ll I I I
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Equation (5.2) holds for w > 0, so this gives 8h for negative

frequencies. The positive frequency components can then be found by

Hermitian conjugation, according to Eq. (2.4). This yields-

0 -iK * r k2 e- iyhci e "i-' ik~ei

Sirc 0-Y

× P* (eK 'A(-))e (5.3)

0

where we used i(w) ,(-W).

VI. FLUORESCENCE NEAR A LINEAR MEDIUM

The results from the previous sections give the Fourier transform

of the radiation field in the entire region z > 0, but the angular-

spectrum representation is cumbersome. Fortunately, it is not necessary

to know the field everywhere in space, since the detectors which measure

the radiation are macroscopic devices at a large distance from the atom.

Consequently, we only have to evaluate the field more explicitly for

distances r between atom and detector, which are much larger than the

wavelength of the radiation. Both the waves which travel directly to

the detector, Eq. (4.3), and waves which are first reflected by the

surface, Eq. (5.1), are of the exp(iK+.r) type. With the method of
16

stationary phase the general form of an asymptotic expansion of an

angular spectrum is found to be

daIiK+-r ikr

a e h(aO) er h (o3) (6.1)21r . 7 r 0 0

for r large and any function h(aO). Here, a and 0o are

o " k sin~coso , 00 - k sin0sino , (6.2)

with (0,0) the spherical coordinates of the position of the detector

with respect to the position of the atom (or origin).

Now we can make an asymptotic expansion of the fields t and th-p -

from Eqs. (4.3) and (5.1), respectively. For the particular solution we

find



d l I I

W 2 ik(r-hcos$)
4re0 c r

in terms of the spherical unit vectors e. and e for the direction

(UO). For the reflected field we obtain

2

Pe (r.w) - ik(r+hcOs d) .R()( )
h4trd c 2r e s)(p9(.~(.)e

- R (0)(e .'(w) e, (6.4)

where

M- . (6.3)

.. " in terms of the perpendicular and parallel components of the dipole
operator A(w) with respect to the surface. This A(w) has the

significance of the mirror image of ^, although the surface is not

necessarily a mirror. The difference between a perfect mirror and an

-:'-" arbitrary surface is taken into account by the Fresnel coefficients

Ra (). These appearing Fresnel coefficients are the reflection

coefficients for an incident wave which would be scattered in the

observation direction (8,0). It follows from symmetry that R (a) is

independent of the angle 0. Comparison of Eqs. (6 .3) and (6.4) shows

that the effective distance between the source and the detector is

r-hcosO and r+hcosO, repectively. The difference is 2hcosi, which is

exactly the difference in path length that a directly-emitted and a

reflected photon has to travel, in order to arrive at the detector at an

angle 0. As illustrated in Fig. 2., it seems that the reflected photon

comes from a mirror dipole, a distance h below the surface.
Now we can add E and C in order to find the total radiation-p h

field in the far zone (neglecting the vacuum field, since no photons can

be detected in this field). Subsequently we take the Fourier inverse,

under the assumption that the radiation has a narrow frequency width

around a certain frequency wo " For an atom. this is the transition

frequency between two levels. We then obtain for the positive frequency

part



i2

2

E (r ) e.(r/c,9,)]e (6.6)
"we c r

0 a

where the summation runs over a - 8,0. The vector operator m is an

effective dipole moment operator for the combination atom plus surface,

and it is explicitly

e iww 0 
,e 0

o (4) o {R~)e.(4)

"" -Ct)(4)[ei.se)'e) (6.7)

where

t-h cosi/c (6.8)

equals half the difference in retardation time between a directly-

emitted and a reflected photon. Equations (6.6) and (6.7) contain all

information about the intensity distribution and the polarization of the

-.. " "-- fluorescence radiation.

VII. FLUORESCENCE NEAR A PC

The radlation field in the far zone for emission near a PC can be

found along the same lines as in the previous section. We now find

2- rt- c2 ,(71

4*a c r0 a

where the effective dipole operator for the entire system is now given
by

-iw r -2iw C

a 0 [ (+)(t) .e 0 (P*(D)[_

+ P(9) (" (t)]ed)] (7.2)

The first term in square brackets is again the directly-emitted

fluorescence. We notice that the second term now depends on the

negative-frequency component of the dipole operator, rather than its

posicive-frequency part. The factor exp(-2iw t) makes the total term
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again a positive-frequency field. Another important difference with Eq.

(6.7) is that both terms in Eq. (7.1) have the same retardation factor

exp(-iw 0 r). Therefore, it seems that the phase-conjugated photons are

effectively emitted from the site of the atom, and not from a mirror

atom below the surface. We shall see in Sec. IX that this has far-

reaching consequences for emission by a quantum dipole.

VIII. INTENSITY DISTRIBUTION

A photodetector in the radiation zone (r large) can measure the

fluorescence radiation. The photon counting rate from any electric

field E, in number of photons per unit time per unit solid angle n, is

given by
17

ato " 2eocr2<E(')(r,t).E(+)(r,t)> , (8.1)

where the angle brackets indicate either a quantum expectation value or

an average over a possible stochasticity of a classical radiation field.

For the problem at hand we have expressions (6.6) and (7.1) for E(+)

which are identical in form. For radiative emission near a linear

medium we then find with Eqs. (6.6) and (8.1)

4

a2W o _ < e '~ -/ , )t [o m tr c 0 ] (82)

atan 812 fc 3 ) - -'~ '' "

0 a

and for a nonlinear medium we simply replace m by K.

Now we can substitute the explicit forms (6.7) and (7.2) for m and

M, respectively, into Eq. (8.2), and work out the various products. At

this stage it is imperative to realize that m and M represent quantum

operators in general, and that an operator product is not necessarily

commutative. We obtain for the linear case

2 4
a, 2 (1 + IR (0)12)(ta- 8(2 3 )

o a

X <(e,@o (_)(t-r/c)][e,*Ao(+)(t-r/c)]> (8.3)

and for reflection at a PC
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4
2 UPVo - _ e0 ( ) ( -r/c ) ] [e ., ( (t -r / c ) ]>

atao 87r 2 f c3 -
0

IP ()1 2 <7 .((t-r/c)]e "t-r/c)l>) (8.4)

Apart from possibly different values for the reflection coefficients Ra

and P a' the only difference between Eqs. (8.3) and (8.4) is that in the

last term of Eq. (8.4) the order of A(+) and u(-) is reversed, as

compared to Eq. (8.3). For a classical dipole, both u(+) and i(-) are

vectors in ordinary space, and products of their components commute. We

conclude that the angular intensity distribution of the radiation for a

classical dipole near a PC is indistinguishable from the radiation

pattern of that same dipole near a linear medium. In particular, for a

perfect mirror we have IRa(O)I - 1, and for a perfect phase-conjugating

mirror we have IP ()I - 1, which makes Eqs. (8.3) and (8.4) identical.

For a quantum dipole (an atom), however, expressions (8.3) and (8.4) can

render quite different results, as we shall show in the next section.

The total emission rate of photons into the half space z > 0 above

the surface is given by

d - d a80 (8.5)
z>O

It is possible to evaluate this intensity of emission explicitly in

terms of angular integrals over the reflection coefficients IRa(8)1 2 and
2IP ()l , weighted with a certain factor, but for the purpose of

illustration we make a simplifying assumption. Suppose that IR ()l 2

and IPa(e)1 2 are independent of the polarization a, and independent of

the angle of incidence 8, as for a perfect mirror and a perfect PC.

Then the integration over the solid angle 0 in Eq. (8.5) can be

performed easily for the two cases where expressions (8.3) and (8.4)

appear in the integrand. The result for a linear medium is

4
dW - wo 2) - (+.)
d! 3 (1 + IR2 ) <4(')(t-r/c).M (t-r/c)> , (8.6)d 6we c3

0

and for a PC we obtain
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4

dt 3 KU (t-r/c)._ (t-r/c)>
61r c

0

+ IP 2 <U(+)g (-) (.( -r/c)> (8.7)

Again, the only difference in form between Eqs. (8.6) and (8.7) is that

( is not necessarily equal to p) A

XI. TWO-LEVEL ATOM

As an important example we consider a non-degenerate two level

atom with excited state je> and ground state jg>. The energy separation

between the two levels is w0o and the matrix element of the transition

dipole moment between the levels is pge - <glele>" Then the positive-
(+)e

frequency part p (t) of the dipole operator is the Heisenberg

representation of the Schr6dinger operator

A(+) - g> ge <el 1 (9.1)

which is proportional to the atomic lowering operator g><el.

Similarly, we have (') - ((+))t _ Ie>,* e<ge. If we want to evaluate

the right-hand sides of Eqs. (8.6) and (8.7), then we have to transform

the expressions first to the Schrodinger representation, and

subsequently calculate the expectation value for a given atomic wave

function. It is not necessary to know explicitly this wave function.

The general result is

dW _.L 1 R

dt 20 0A + )ne(t-r/c) (9.2)

for a linear medium, and

-W " 1A)1w[n (t-r/c) + IP 2 n(t-r/c)] (9.3)
dt 2 0e

for a PC. Here, ne and n are the populations of the excited and ground• g

state, respectively, at the retarded time t - r/c. Their values depend

on the preparation of the atom in a certain state. If we pass an atomic

beam with ground-state atoms over the surface of the medium, then at a

certain moment a strong laser pulse can partially excite the atoms, and

with a proper choice of pulse shape and intensity the atoms can be

prepared in virtually any desired state. The only restriction is
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n e(t) + n (t) - I(9.4)

at all times.

Now let us look at the interpretation of Eqs. (9.2) and (9.3).

First, recall that the emission rate for this atom in empty space is

given by dW/dt - AV"o n e(t-r/c), with

3

A- 3  0 3 1ge 2 (9.5)

as the Einstein coefficient for spontaneous decay from level Je> to

level Jg>. For an atom at r - h, half the amount of photons will be

emitted in the direction z > 0, and the other half in the direction z <

0. Inspection of Eqs. (9.2) and (9.3) shows that the first term in both

cases is exactly hawone (t-r/c), which is half the emission rate in free

space. We conclude that these first terms corresond to photons which

are emitted directly into the direction z > 0, as if there were no

surface at all. The other half of the number of photons are emitted

into the direction z < 0, and they travel towards the surface. For a

linear medium they have a probability of IRI2 to be reflected, just like

a classical wave, and hence the number of photons which will travel

towards the detector in z > 0 is exactly IRI 2 times the number of

photons that was emitted into the direction z < 0. This gives the

second term in Eq. (9.2). Figure 2 illustrates the situation.

Also for a PC, the number of photons per unit time that is emitted

into the direction z < 0 equals Aow one(t-r/c), but Eq. (9.3) shows that

there is not a second term, like in Eq. (9.2), which accounts for the

fraction of reflected photons. There are at least two possible

explanations for this peculiar fact. First, the dipole radiation, which

is emitted towards the PC, is a spherical diverging wave. For a

classical wave of this kind, the reflected and conjugated wave would be

a converging spherical wave which travels towards the atom, and is

focused exactly on the atom. After the emission, the atom was left in

its ground state, so when the conjugated photon comes back, it can be

absorbed again by the atom (stimulated excitation). In that process the

atom would return to its original excited state. In this picture,

photons bounce back and forth between the atom and the PC, and

effectively the atom remains in its excited state. A second explanation

would be that the photons which hit the PC are simply absorbed, and do
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not come back at all. In that case, the atom would be left in its

ground state after the emission, because of energy considerations. It

is impossible to decide which interpretation is correct. This would

require at least a quantum description of the state of the atom as a

function of time, so that we can follow the time evolution of n (t)

during the emission.

Another kind of strange behavior is reflected by the appearance of

the second term in Eq. (9.3). This term is proportional to the

population n of the ground state. If the atom would be entirely in itsg
ground state (n - 0, n - 1), it emits fluorescent photons at a rate

A)(w 0PI2 into the region z > 0. A possible interpretation of this

phenomenon is the following. The presence of the dipole polarizes the

PC, which subsequently emits spontaneously a fluorescent photon, focused

on the atom. The atom absorbs the photon, goes to its excited state,

and decays again. During this regular decay it emits a photon directly

into the direction of the detector. The net effect for the atom is that

it remains in its ground state. The atom merely acts as a medium which

extracts photons from the PC. Notice that this process has no classical

analogue, since there is a 'reflected' field, but without an incident

field. Figure 3 visualizes some possible interpretations of the

behavior of an atom near a PC. We emphasize that these explanations are

tentative, and that more complicated schemes are possible.

X.COCUIN

We have studied the emission of radiation by a dipole near a

surface, where we allowed the reflecting medium to be either linear or

nonlinear. Since the Heisenberg equations for the electromagnetic field

operators are identical in form as the classical Maxwell equations, we

were able to treat both the emission by a classical and by a quantum

dipole within the same framework. A consequence of this analogy is that

a major part of the features of a quantum radiation field is entirely

classical. We have shown that also the reflected quantum field can be

expressed in terms of the classical Fresnel coefficients for reflection,

and that the details of the structure of the medium are irrelevant for

the form of the radiation field. All that has to be known are these

Fresnel coefficients.

Classical interference between the quantum waves determines the

intensity distribution and polarization of the radiation in the far

zone. Even the total emission rate dW/dt can be be found without an



18

explicit quantization of the field, and the modifications due to the

presence of the surface can be accounted for by the Fresnel

coefficients. Even more obscure phenomena, like those predicted by Eq.

(9.3), have their origin in simple classical interference between the

various waves. We only needed the fact that g is an atomic operator,

but no reference to the quantum aspects of the radiation was required

for the derivation of this result.
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a b

Fig. I . Reflection of an incident (i) plane-wave component of the

fluorescence, emitted by the dipole A, at a linear (a) and a nonlinear

transparent (b) medium. The only distinction is the propagation

direction of the reflected (r) wave. The waves or photons labeled (d)

propagate directly towards the photomultiplier (PH).
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'6 d
I 

<

2hcos8

Fig. 2. A detector is positioned at an angle 0 with the z-axis.

Photons which arrive at a certain time can have travelled two different
paths. They can either go directly (d) from the atom to the detector,
or they can be scattered by the (linear) surface first (i plus r path).
The difference in path length is 2hcoss, and the difference in travel
time is 2r. It seems that the r-photons are emitted by a mirror dipole,
a distance h below the surface. Also notice that the angle of incidence
equals the angle of reflection, just as for classical fields.



d/

r

a b

Fig. 3. Different mechanisms for the emission of fluorescence near a
PC. In (a), the atom is in its excited state, and only the directlv-
emitted (d) photons end up in the detector. The i-photons interact with
the PC, and are either completely absorbed or reflected back. If the
latter would be the case, then the atom absorbs the r-photon again. No
r-photon can pass the atom in case (a). In (b), the atom is in its
ground state. The PC spontaneously emits a photon, which is absorbed by
the atom, and subsequently emitted into the direction of the detector.
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